

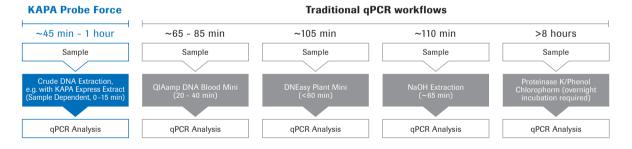
Evolved to break through

KAPA Probe Force

Evolved to break through

KAPA Probe Force

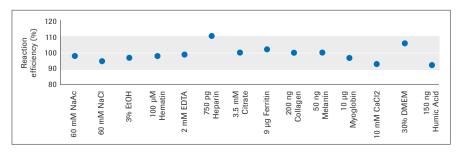
KAPA Probe Force is our most inhibitor–resistant qPCR master mix that removes the need for DNA purification, enabling streamlined sample-to-result workflows. The master mix contains a third-generation (3G) DNA polymerase evolved to overcome blood, tissue, and plant PCR inhibitors. Crude samples can now be analyzed with comparable accuracy, reproducibility, and sensitivity as purified DNA using KAPA Probe Force.


Gains from KAPA Probe Force:

- Easily work with crude samples and benefit from broad tolerance to carry-over inhibitors
 Obtain accurate and reproducible results with direct PCR from crude blood, tissue and plant extracts
- Save valuable time and costs
 Minimize the need for DNA purification and shorten your sample-to-result workflows to <1 hour
- Expand your options in assay development
 Use for multiplexing qPCR applications with hydrolysis probe assays on a broad range of platforms

Streamline sample-to-result workflows

KAPA Probe Force enables the use of rapid crude DNA extraction methods and overcomes carry-over inhibitors. Competing master mixes used in traditional blood, tissue, and plant qPCR workflows require robust upstream sample processing (e.g., column purification or nuclease digestion).


- Eliminate the time and cost of sample purification by amplifying directly from crude samples
- Analyze a wide range of sample types including whole blood, cells, mouse tails, FFPE, leaf, stem, seed, and soil

Generate accurate and reproducible results

- Kits include a third-generation DNA polymerase, evolved for robust target amplification and detection
- Enzyme maintains high reaction efficiency in the presence of PCR inhibitors for reliable data generation

Reaction efficiency with inhibited samples

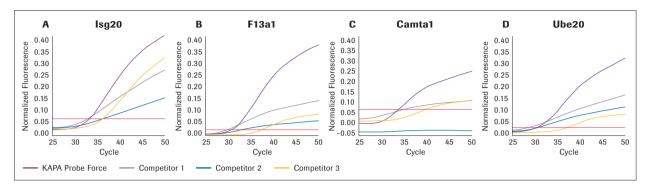
Figure 1: High efficiency target amplification.

Reaction efficiencies achieved for inhibitor spiked samples were examined and compared to that of purified DNA.

Across various inhibitor types, efficiencies remained within 90 – 110%.

Break through high levels of qPCR inhibitors

KAPA Probe Force exhibits consistent and robust amplification across all inhibitors tested, without observable Cq delays.


- Achieve greater levels of sensitivity for inhibited blood, tissue, and plant samples
- Convert purified DNA assays to crude workflows without a loss in data quality

Purified vs. inhibited sample ΔCq

		Probe Force	Competitor 1	Competitor 2	Competitor 3	Competitor 4	Competitor 5
100 pg human gDNA		29.62	28.91	29.08	32.98	29.53	29.78
Blood inhibitors	Citrate (3.5 mM)	-0.04	2.64	-0.18	0.98	0.20	2.90
	EDTA (2 mM)	0.26	0.29	0.24	-0.35	0.80	1.07
	Ferritin (9 µg /10 µL)	-0.33	0.50	0.48	10 ng	NA	NA
	Hematin (100 μM)	0.99	0.29	0.75	NA	NA	NA
	Heparin (750 pg /10 μL)	-0.23	0.67	1.14	-0.02	0.53	3.77
100 pg mouse gDNA		29.56	29.17	28.78	32.40	29.13	29.15
Tissue inhibitors	Collagen (200 ng /10 μL)	-0.41	0.63	-0.02	1.40	0.21	0.69
	Myoglobin (10 μg /10 μL)	0.18	1.59	4.84	-1.65	3.47	1.97
	Melanin (50 ng /10 μL)	-0.09	0.73	0.97	NA	NA	NA
	CaCl ₂ (10 mM)	0.03	100 ng	100 ng	NA	100 ng	NA
	DMEM (30%)	-0.72	NA	NA	NA	NA	NA
40 pg grapevine gDNA		33.79	33.85	33.70	34.29	33.05	40.78
Plant inhibitors	Polyphenols (7%)	1.02	0.10	0.47	3.01	0.98	1 ng
	Humic Acid (150 ng /10 μL)	0.76	0.52	0.70	NA	NA	NA
<1 ΔCq 1 – 2 ΔCq 2 – 3 ΔCq >3 ΔCq Detection failed. Lowest concentration at which Cq < 45 cycles detected or No Amplification (NA).							

Table 1: Broad range of high inhibitor resistance. Baseline performance of KAPA Probe Force and competing master mixes was measured by creating standard curves with purified DNA according to each manufacturer's recommended cycling conditions. Serial dilutions were run in the following ranges: Human: 100 ng – 10 pg; Mouse: 100 ng – 10 pg; Plant: 25 ng – 8 pg. Inhibitors were individually spiked into purified DNA samples at high concentrations to determine their effect on Cq values.

Maximize data collection from precious samples, increase throughput, and reduce costs

Figure 2: Highly efficient 4-plex performance. Four targets were amplified in a multiplex assay with KAPA Probe Force and three competitive master mixes. 100 pg mouse gDNA was amplified targeting the (A) Isg20 (FAM/BHQ-1), (B) F13a1 (CAL Fluor Orange 560), (C) Camta1 (Quasar 670) and (D) Ube20 (Quasar 705) genes. 500 nM primers and 110 nM probes were used with the following cycling conditions: 95°C for 30 sec followed by 50 cycles of 95°C for 3 sec, and 60°C for 30 sec.

Ordering information

Product	Pack size	Catalog number	
KAPA Probe Force qPCR Master Mix	10 ml	08 041 237 001	
KAPA Probe Force qPCR Master Mix	50 ml	08 041 229 001	
Related products	Pack size	Catalog number	
KAPA Express Extract	1,000 reactions	08 041 253 001	

Reference

Data on file at Roche.

Regulatory disclaimer

For further processing only.

custombiotech.roche.com

Please contact your local CustomBiotech representative

Europe, Middle East, Africa, Latin America

Phone +49 621 759 8580 Fax +49 621 759 6385 mannheim.custombiotech@roche.com

United States

Phone +1 800 428 5433, ext. 14649 (toll-free) Fax +1 317 521 4065 custombiotech.ussales@roche.com

Canada

Phone +1 450 686 7050 Fax +1 450 686 7012 custombiotech.can@roche.com

Japan

Phone +81 3 6634 1046 Fax +81 3 5479 0585 japan.custombiotech@roche.com

Asia Pacific

Phone +65 6371 6638 Fax +65 6371 6601 apac.custombiotech@roche.com

Published by

Roche Diagnostics GmbH Sandhofer Straße 116 68305 Mannheim Germany

© 2017 Roche Diagnostics GmbH All rights reserved.